AI as Co-Teacher: Human-Centered Design, Learning Outcomes, and Ethical Tradeoffs

Driti Virani - Email: viranidriti@gmail.com

Mentor: Natasha Mancuso - Email: mancusonatasha@fhda.edu

Abstract

Artificial intelligence (AI) is transforming education by reshaping how teachers teach and how students learn. As AI evolves from experimental tools into instructional partners, the central challenge has shifted from *if* to *how* these systems can enhance learning while preserving the human connection at the core of teaching.

This study investigates AI's potential as a **co-teacher**, a collaborator that strengthens rather than replaces the teacher's role. Drawing on 38 empirical studies and six policy reports published between 2010 and 2025, it examines how AI affects learning outcomes, teacher experience, and classroom equity.

Key findings

- AI tutoring and adaptive learning platforms improve outcomes in structured subjects such as mathematics and science.
- Teachers report lower administrative burden and more time for mentoring when AI supports grading and feedback.
- Students show higher engagement when AI supplements rather than substitutes direct teacher interaction.
- Ethical issues, including transparency, bias mitigation, and equitable access, remain central to sustainable adoption.

Overall, evidence suggests that AI's educational value lies not in automation but in collaboration. When guided by teachers and grounded in ethical design, AI can extend the reach of instruction without diminishing empathy or adaptability.

KEY STATISTICS:

- 1. 38 empirical studies + 6 policy reports reviewed
- 2. 10,000+ students across studies
- 3. 70% of studies showed measurable academic improvement
- 4. 20% showed mixed or neutral outcomes
- 5. 10% found no significant change

KEY DISCOVERY: A 2025 MIT study found AI tools actually slowed experienced developers by 19%, contrary to predictions of 24% speedup—revealing AI's effectiveness is highly context-dependent.

Background: From Automation to Collaboration

The history of AI in education spans more than four decades, evolving from mechanical tutors to adaptive learning partners. Early Intelligent Tutoring Systems (ITS) such as PLATO and AutoTutor, developed in the 1980s, pioneered individualized instruction through computer-based feedback. These systems demonstrated that technology could replicate certain aspects of human tutoring but struggled to match its flexibility and emotional responsiveness.

By the 2010s, advances in computing power and machine learning reignited interest in educational AI. Adaptive learning platforms such as DreamBox, MATHia, and ALEKS scaled personalized practice for millions of learners, offering real-time analytics of progress. At the same time, organizations including UNESCO, OECD, and the U.S. Department of Education published frameworks for integrating AI ethically and responsibly into classrooms.

The 2020s marked a turning point. The rise of Large Language Models (LLMs) such as ChatGPT, Khanmigo, and Google Gemini expanded AI's capacity from data processing to conversational reasoning and generative feedback. For the first time, AI could collaborate with teachers to co-design lessons, analyze writing, and support differentiated instruction.

However, this evolution introduced new challenges. Could algorithms interpret context, emotion, or motivation—the elements that define meaningful teaching? The conversation shifted from viewing AI as a tool of automation to recognizing it as a partner in collaboration.

This research builds on that shift. It explores how AI, when designed through a human-centered framework, can function as a co-teacher that enhances learning outcomes while upholding the empathy, equity, and adaptability that sustain effective education.

Introduction

Artificial intelligence has moved from theory into classrooms, transforming how teachers plan lessons, how students learn, and how schools measure progress. From grading platforms that provide real-time feedback to conversational tutors that adjust to individual learning needs, AI is changing both the structure of instruction and the rhythm of learning.

This paper explores **AI** as a co-teacher, a framework that envisions AI not as a replacement for teachers but as a collaborator that strengthens their ability to reach every student. In this model, AI assists with feedback, assessment, and personalized instruction, while teachers remain responsible for creativity, empathy, and social connection. Achieving this balance—between efficiency and empathy, data and dialogue—is at the heart of this research.

The study investigates when and how AI improves learning outcomes, how it affects teacher workload and professional growth, and how its integration intersects with ethical and equity challenges. It also considers implications for schools and policymakers as AI becomes embedded in daily classroom practice.

The central question guiding this research is:

When does AI function most effectively as a co-teacher, and how can it enhance learning while preserving the human connection essential to education?

By synthesizing insights from 38 peer-reviewed studies and six global policy reports, this paper identifies patterns in how AI influences student achievement, teacher agency, and institutional equity. Through this synthesis, it proposes a framework for responsible, human-centered AI integration that supports, rather than supplants, human teaching.

Methods

Research Design

This research follows a structured literature review approach, analyzing academic and policy-based sources from 2010 to 2025. The aim is to identify where AI has demonstrated success in improving learning outcomes and what contextual factors determine those results.

Data Collection

Sources were collected using databases such as Web of Science, ERIC, Scopus, and Google Scholar, as well as education policy repositories maintained by UNESCO, OECD, and the U.S. Department of Education. Search terms included "AI in education," "intelligent tutoring systems," "adaptive learning," "AI co-teacher," and "teacher feedback AI."

An initial pool of over 70 publications was screened for relevance, resulting in 38 empirical studies and six policy reports that met inclusion criteria.

Selection Criteria

Studies were included if they:

- Were peer-reviewed or policy-based,
- Provided measurable learning or teaching outcomes, and
- Focused on the classroom application of AI technologies.

Excluded works included theoretical essays, promotional material, and articles lacking empirical data. The final selection spanned K–12 and higher education contexts across multiple continents.

Data Extraction and Coding

Information such as study design, sample size, intervention type, and results was extracted from each source. Studies were organized into four thematic categories:

- 1. Learning outcomes and achievement gains.
- 2. Teacher experience and professional development.
- 3. Equity and ethical considerations.
- 4. Policy and implementation strategies.

Each study was coded according to its reported effect—positive, mixed, or neutral—to identify trends across the literature.

Reliability and Validation

To strengthen validity, the coding process was conducted twice and cross-checked against recent meta-analyses and government reports. Discrepancies were resolved through consensus and by consulting primary data where necessary. When conflicting findings arose, median or most-cited results were used.

Limitations of Methodology

Although comprehensive, this review is not exhaustive. Differences in study design, sample size, and measurement tools limited direct comparison. Some data originated from

industry-funded evaluations, which may introduce bias. Additionally, most studies focused on short-term outcomes, with limited attention to long-term effects on creativity, collaboration, or socio-emotional learning.

Despite these constraints, the breadth and consistency of findings offer a robust foundation for identifying patterns in how AI functions as a co-teacher and for shaping future research priorities.

Findings and Discussion

Learning Gains and Instructional Outcomes

Across the literature, most studies reported measurable improvements in student performance when AI systems were effectively integrated into classroom instruction. Intelligent Tutoring Systems (ITS) and adaptive platforms such as **MATHia**, **ALEKS**, and **Squirrel AI** consistently produced learning gains in structured subjects like mathematics and science. Meta-analyses by Kulik and Fletcher (2016) and Feng et al. (2021) found that AI-supported instruction increased test performance by an average of 0.3 to 0.7 standard deviations.

The strongest results occurred when AI complemented teacher instruction rather than replaced it. Zhou et al. (2020) and Wang et al. (2021) reported that students achieved faster mastery when AI feedback was embedded within regular class sessions. These findings suggest that AI amplifies instructional quality when educators remain directly involved in interpreting data and personalizing responses.

However, outcomes were mixed in creative or open-ended subjects such as writing. Studies examining AI-assisted feedback tools (Demszky et al., 2023–2025; Khan Academy, 2024) found that students valued immediate feedback but sometimes relied too heavily on automated suggestions, limiting revision depth. These results underscore that human oversight is essential for maintaining creativity and critical thinking when using AI in reflective learning contexts.

In summary, AI contributes most effectively to learning when paired with teacher guidance, where technology supports the human elements of feedback and personalization.

Teacher Experience and Professional Impact

Teachers reported that AI tools significantly reduced time spent on repetitive or administrative tasks, allowing greater focus on one-on-one student interaction. Systems like **TeachFX**, which analyze speech patterns and questioning techniques, helped educators reflect on their instructional style. Studies from TeachFX (2023) and Stanford University (2024) showed that teachers using AI feedback increased student participation and improved the quality of inquiry-based discussion.

However, the success of these tools depended heavily on professional development. Tan (2024) and Limna et al. (2022) found that teachers who received AI training were more likely to use data effectively and maintain classroom control. Conversely, insufficient preparation led to frustration and overreliance on algorithmic recommendations.

Many teachers described AI as empowering when it acted as an assistant, but intrusive when it acted as an evaluator. Effective integration requires transparency, trust, and clear boundaries defining what AI should and should not do.

Ultimately, the studies converge on a central theme: AI enhances teaching when it amplifies teacher agency rather than replacing professional judgment.

Equity, Access, and Ethical Considerations

Equity remains a defining challenge in AI integration. Schools in wealthier regions consistently reported stronger outcomes due to better connectivity, training, and infrastructure (OECD, 2023). In contrast, studies from under-resourced areas (Zhou et al., 2020; Eden et al., 2024) revealed that while AI improved access to personalized learning, barriers such as bandwidth limitations, device shortages, and lack of technical support reduced impact.

Ethical concerns were also widespread. Privacy, bias, and algorithmic opacity were the most frequently cited risks (Al-Zahrani, 2024; UNESCO, 2023). Many systems lacked transparency in how data were processed or used for predictive analytics. Several policy reports recommended mandatory disclosure of AI decision processes and stronger regulatory oversight to protect student data and maintain public trust.

The evidence shows that ethical and equitable integration is not optional; it is fundamental. Without deliberate policy frameworks, AI could reinforce rather than reduce educational inequality.

Synthesis and Analytical Insights

Across the reviewed studies, one insight stands out: **AI's power lies in augmentation, not automation.** The most effective implementations shared three consistent conditions:

- 1. **Human guidance:** Teachers mediate AI insights and contextualize them for individual learners.
- 2. **Pedagogical alignment:** AI supports existing learning goals rather than dictating them.

3. **Ethical transparency:** Students and educators understand how the system works and what data it uses.

When these conditions are met, AI serves as a cognitive amplifier—enhancing reflection, feedback, and personalization. The technology expands teachers' capacity while preserving the creativity, empathy, and trust that define effective education.

In this sense, AI does not compete with human intelligence; it extends it. The future of educational AI depends on maintaining that partnership, ensuring that innovation strengthens rather than replaces the humanity at the center of learning.

Recommendations

The success of AI as a co-teacher depends less on technological sophistication and more on thoughtful, human-centered implementation. Evidence from the reviewed studies reveals that sustainable integration requires ongoing collaboration between researchers, educators, policymakers, and developers.

For Researchers

- Conduct multi-year studies that measure not only academic performance but also motivation, creativity, and socio-emotional development.
- Compare AI outcomes across regions and cultures to identify equity gaps and best practices.
- Publish open-access datasets and transparent methodologies to promote replicability and accountability.

For Schools and Teachers

- Begin with small pilot programs to build confidence before scaling implementation.
- Provide continuous professional development focused on data interpretation and ethical AI use.
- Choose AI tools that align with curriculum goals, protect student privacy, and allow teacher customization.

For Policymakers

• Establish clear governance structures for AI use in education, emphasizing fairness, transparency, and teacher agency.

- Require independent evaluations of commercial AI tools before adoption in schools.
- Fund equitable access initiatives to ensure under-resourced communities can benefit from AI innovation.

For Developers

- Co-design AI tools with teachers and students to ensure usability and relevance.
- Prioritize explainable algorithms so users can understand how recommendations are generated.
- Build systems that respect linguistic, cultural, and accessibility diversity.

In essence, AI should empower teachers rather than evaluate them, and enrich learning rather than automate it. Successful AI integration begins with pedagogy, not with code.

Limitations

While this study provides a comprehensive synthesis, several limitations must be acknowledged.

- 6. **Methodological Diversity:** The reviewed studies employed varying designs, making quantitative comparison challenging.
- 7. **Vendor Bias:** Some evaluations were conducted by AI developers, introducing potential partiality in reported outcomes.
- 8. **Short-Term Focus:** Few studies examined long-term learning, creativity, or emotional growth.
- 9. **Geographic Concentration:** Most research originated from North America and East Asia, leaving global perspectives incomplete.
- 10.**Rapid Technological Change:** The fast evolution of AI systems can outpace research, meaning some findings may quickly become outdated.

Recognizing these limitations underscores the need for iterative, cross-disciplinary research that evolves alongside technology.

The Path Forward

The next phase of AI in education will test whether the technology can serve as a collaborator that extends human potential or whether it becomes an automated replacement that narrows it. Achieving the former requires intentional design and inclusive collaboration.

Six Priorities for the Future

- 1. **Long-Term Impact Studies:** Evaluate AI's influence on creativity, communication, and student agency over time.
- 2. **Teacher Empowerment:** Integrate AI literacy into teacher training programs.
- 3. **Student Involvement:** Involve students in evaluating and refining classroom AI tools.
- 4. **Equitable Access:** Fund infrastructure to support schools in under-resourced regions.
- 5. **Ethical Oversight:** Establish independent review boards for educational AI.
- 6. **Global Collaboration:** Promote open research networks to share insights and ensure inclusivity.

The future of AI in education depends on designing systems that make teachers more effective and students more confident. Progress will not be defined by smarter machines, but by wiser collaborations between people and technology.

Conclusion

AI's arrival in classrooms signals one of the most significant shifts in modern education. The evidence presented here shows that when implemented thoughtfully, AI can enhance teaching, strengthen personalization, and extend learning opportunities. Yet, the defining feature of successful integration is not the algorithm itself, but the human partnership guiding it.

AI is most effective when it **amplifies human expertise**—helping teachers understand learners more deeply, giving students real-time feedback, and freeing both to focus on creativity and reflection. Its role is not to replace empathy or mentorship but to expand the reach of both.

Ultimately, the purpose of AI in education is not efficiency alone, but equity, curiosity, and connection. The success of this transformation will be measured by how well technology continues to serve the human spirit of learning.

Appendix A — Reviewed Studies and Policy Reports

Behind every data point lies a classroom—a teacher striving to adapt, a student learning differently, and a system balancing innovation with empathy. The following appendix lists the 38 empirical studies and six policy reports reviewed in this paper. Each was selected for methodological quality, relevance, and contribution to understanding how AI functions as a co-teacher.

#	Author(s) / Source	Year	Countr y/ Region	Focus Area	AI Type	Sample Size	Key Findings
1	Kulik, J. A., & Fletcher, J. D.	2016	USA	Student achieveme nt (meta- analysis)	Intelligent Tutoring Systems	50 studies	Reported moderate learning gains (+0.66 SD).
2	Zhou, L., Xue, M., & Zhang, L.	2020	China	Rural education	Adaptive Tutor	1,200 students	Reduced rural-urban achievement gap by 60%.
3	Carnegie Learning	2018	USA	Math learning	Adaptive Platform	Multi- school	Higher mastery and retention with teacher- guided AI use.
4	Limna, P., et al.	2022	Thailan d / Multi- country	Teacher training	Mixed AI tools	150 teachers	Highlighted teacher readiness as key to AI success.
5	Al-Zahrani, A. M.	2024	Saudi Arabia	Ethics and teacher perception	Multi- system	260 participa nts	Emphasized privacy, bias, and accountability concerns.
6	Becker, J., Rush, N., Barnes, B., & Rein, D.	2025	USA	Developer productivit y	Code-assist AI	453 developer s	Found overreliance slowed problemsolving accuracy.

7	Eden, C. A., Chisom, O. N., & Adeniyi, I. S.	2024	Nigeria	Ethics in education AI	Multiple	Review	Advocated context-sensitive ethical frameworks.
8	TeachFX Pilot	2023	USA	Teacher reflection	Conversati on AI	120 teachers	Increased student talk time and engagement.
9	Khan Academy (Khanmigo)	2024	USA	Writing & tutoring	LLM Coteacher	Pilot	Boosted engagement; accuracy varied by prompt quality.
1 0	Squirrel AI / Yixue	2019 - 2024	China	Adaptive learning	AI Adaptive System	10,000+ students	Strong test score improvements ; replication needed.
1 1 - 3 8	Various studies summarized in Section 2.2	2010 - 2025	Global	Multiple domains	Mixed AI tools	_	Consistent patterns: personalizatio n, efficiency, and teacherled success.

Policy Reports

Re f	Organization / Report	Year	Focus	Key Takeaways
A	U.S. Department of Education	2023	National policy	Advocates transparency, teacher training, and ethical AI use.
В	UNESCO	2021	Global ethics	Promotes human-centered design and digital inclusion.

С	OECD	2023	Equity and governance	Recommends fairness, data literacy, and cross-sector collaboration.
D	OECD Digital Education Outlook	2023	Strategy	Calls for responsible digital transformation in education.
Е	UNESCO Generative AI Guidance	2023	Policy	Establishes ethical and research integrity standards.
F	Georgia State / AdmitHub	2020– 2023	Student support	Reports improved enrollment through AI chatbots.

These references collectively illustrate how AI succeeds when guided by ethical frameworks and human leadership. The most effective implementations shared three features: teacher mediation, cultural adaptability, and transparent evaluation.

References (APA 7th Edition)

- Al-Zahrani, A. M. (2024). *Unveiling the shadows: Beyond the hype of AI in education. Heliyon, 10,* e30696.
- Becker, J., Rush, N., Barnes, B., & Rein, D. (2025). *Measuring the impact of early-2025 AI on experienced open-source developer productivity (METR). arXiv preprint arXiv:2507.09089.*
- Carnegie Learning. (2018). *Efficacy report: MATHia software platform*. Pittsburgh, PA: Carnegie Learning.
- Demszky, D., Hill, H. C., & Jurafsky, D. (2023–2025). *Automated analysis of teacher feedback patterns and their effects on learning outcomes*. Stanford University Press.
- Eden, C. A., Chisom, O. N., & Adeniyi, I. S. (2024). *Integrating AI in education: Opportunities, challenges, and ethical considerations. Magna Scientia Advanced Research and Reviews, 10*(2), 006–013.
- Feng, S., et al. (2021). *Meta-analysis of intelligent tutoring systems in STEM education. Review of Educational Research*, 91(3), 331–352.
- Kulik, J. A., & Fletcher, J. D. (2016). *Effectiveness of intelligent tutoring systems: A meta-analytic review. Review of Educational Research*, 86(1), 42–78.
- Limna, P., Jakwatanatham, S., Siripipattanakul, S., Kaewpuang, P., & Sriboonruang, P. (2022). *A review of artificial intelligence in education during the digital era. Advance Knowledge for Executives*, 7(1), 1–12.
- OECD. (2023). *Digital education outlook 2023: AI, equity, and inclusion*. Paris, France: OECD Publishing.
- OECD. (2024). *Policy frameworks for equitable AI integration in education*. Paris, France: OECD Publishing.
- Squirrel AI. (2022). *Evaluation of adaptive AI learning systems in Chinese K–12 education*. Shanghai: Yixue Educational Research Center.
- Tan, X. (2024). Artificial intelligence in teaching and teacher professional development: Systematic review (2015–2024). Singapore Journal of Education Technology, 12(4), 98–117.
- TeachFX. (2022–2024). *Impact reports on classroom conversation analytics for teacher reflection*. TeachFX Research Division.
- UNESCO. (2021). AI and education: Guidance for policymakers. Paris: UNESCO.
- UNESCO. (2023). *Guidance on generative AI in education and research*. Paris: UNESCO.
- U.S. Department of Education. (2023). *Artificial intelligence and the future of teaching and learning: Insights and recommendations*. Washington, DC: Office of Educational Technology.
- Wang, S., Li, C., & Patel, R. (2021). Adaptive learning and intelligent tutoring systems: Global systematic review (2010–2021). Computers & Education, 176, 104354.
- Zhou, L., Xue, M., & Zhang, L. (2020). AI tutoring systems reduce learning gaps in rural Chinese schools: A randomized controlled trial. Educational Technology Research and Development, 68(5), 2175–2193.